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Abstract

Extracorporeal life support (ECLS) has become increasingly popular
as a salvage strategy for critically ill adults. Major advances in
technology and the severe acute respiratory distress syndrome
that characterized the 2009 influenza A(H1N1) pandemic have
stimulated renewed interest in the use of venovenous extracorporeal
membrane oxygenation (ECMO) and extracorporeal carbon dioxide
removal to support the respiratory system. Theoretical advantages of
ECLS for respiratory failure include the ability to rest the lungs by
avoiding injuriousmechanical ventilator settings and the potential to
facilitate earlymobilization, whichmay be advantageous for bridging

to recovery or to lung transplantation. The use of venoarterial
ECMO has been expanded and applied to critically ill adults with
hemodynamic compromise from a variety of etiologies, beyond
postcardiotomy failure. Although technology and general care of the
ECLS patient have evolved, ECLS is not without potentially serious
complications and remains unproven as a treatment modality. The
therapy is now being tested in clinical trials, although numerous
questions remain about the application of ECLS and its impact on
outcomes in critically ill adults.
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The first heart-lung machine was used
for human cardiac surgery in 1953. In
1972, Dr. Robert Bartlett reported on the
successful use of extracorporeal membrane
oxygenation (ECMO) outside of the
operating room (1). This groundbreaking
work led to the uptake of this technology in
neonatal and pediatric populations. Since
these early days of extracorporeal life
support (ECLS), technologic innovations
and ongoing use of ECMO in skilled
centers have led to expanded use in
adult populations. In more recent years,
continued improvements in technology and
in the management of patients receiving
ECLS, as well as the heightened risk of
severe acute respiratory distress syndrome
(ARDS) during the 2009 to 2010 influenza
A(H1N1) pandemic, have resulted in an
increasing number of adult patients being
supported with ECLS for cardiopulmonary

failure after traditional treatment options
have failed. Despite advances in care,
indications and guidelines for the use of
ECLS in the critically ill adult have yet to be
firmly established.

Circuit Configurations,
Components Common to All
Forms of Extracorporeal Life
Support, and Modes of
Support

A basic circuit is composed of a blood pump,
a membrane lung (or oxygenator), a heat
exchanger, and cannulas and tubing.
Depending on patient needs, partial to
complete cardiopulmonary support
(venoarterial [VA]-ECMO) or partial to
complete pulmonary support (venovenous
[VV]-ECMO) can be achieved. In a typical

circuit, venous blood is drained out of
a major vein, passed through a pump and
a membrane lung for gas exchange, and
oxygenated blood is then returned to
a major artery (VA-ECMO) or vein (VV-
ECMO) (Figure 1). An arteriovenous (AV)
extracorporeal circuit that incorporates
a pump or uses the patient’s own
arterial pressure to drive blood across an
oxygenator, or a VV-configured circuit with
a low-flow pump, can partially support the
respiratory system by effectively removing
carbon dioxide (CO2) (extracorporeal
CO2 removal [ECCO2R]).

Roller and centrifugal pumps are the
two basic types of blood pumps used for
ECLS, although in recent years adults are
typically supported with centrifugal
technology. A roller pump displaces blood
through flexible tubing located inside
a curved raceway to generate forward flow
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proportional to the pump speed and tubing
size; this requires careful servo-regulation
of pressures and a larger footprint and is
generally inadequate for supporting adults
over the longer term. Centrifugal pumps
generate a pressure differential across the
pump head via spinning pump components
and centrifugal force, resulting in negative
pressure in the drainage tubing and
subsequent blood flow. The relationship
between pump speed and blood flow is not
directly related, requiring a flow meter.
Modern pumps use magnetically driven or
magnetically suspended impellers, which
spin at the desired revolutions per minute to
create blood flow while minimizing heat
generation and blood–surface contact and
therefore hemolysis (2, 3). Inlet pressure
from the drainage limb and outlet pressure
from the pump are monitored for excess

negative or positive swings, respectively.
Additional shunts (e.g., “bridges” between
drainage and return limbs for weaning trials)
and monitors (e.g., bubble detectors) can be
added, but doing so may introduce additional
access points and complicate the circuit.

The membrane lung (or oxygenator) is
responsible for gas exchange (Figure 1).
Oxygenation capacity is dependent on
surface area of the membrane and contact
with the blood phase. Oxygenator designs
have evolved over time from flat sheets to
hollow fiber (gas phase inside) membranes
and from microporous to compressed
microporous (“solid”) designs such that
gas exchange occurs entirely by diffusion.
Polymethylpentene hollow-fiber devices are
best suited for longer-term ECLS and have
been shown to have lower rates of
hemolysis, better durability with lower

pressure differential, and less plasma
leakage (4). Fresh gas, or sweep gas, is
introduced into the gas phase of the
membrane (usually delivered as 100%
oxygen, oxygen-ambient air, or oxygen-
CO2 mixtures, controlled by a blender) and
is adjusted to lower or maintain CO2 levels.

Cannulas and tubing size limit the flow
rate achieved, which depends directly on the
length and inversely on the radius of the
conduits. For adults, typical cannulas range
from 23 to 29F for venous drainage and
21 to 23F for blood return (and as small as
17–19F when in a VA configuration) with
expected pressure flow characteristics
available from the manufacturers. Vascular
access can be obtained with extrathoracic
percutaneous cannulation using the
Seldinger technique, although central
cannulation and/or a direct cutdown
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Figure 1. Common extracorporeal life support circuit configurations and schematic of gas exchange in the membrane lung.

CONCISE CLINICAL REVIEW

498 American Journal of Respiratory and Critical Care Medicine Volume 190 Number 5 | September 1 2014



approach are also possible (5). The femoral
vessels usually provide adequate access;
a small distal perfusion cannula may be
added to avoid or rescue limb ischemia.
Alternative arterial access has been
achieved in the subclavian and axillary
arteries with adjunct synthetic grafting in
adults (6, 7). A double-lumen cannula
(20–31F) with drainage ports in the
inferior and superior venae cavae and
a return port positioned in the right
atrium with flow directed across
the tricuspid valve is available for VV-
ECMO and offers single-site internal
jugular access (Avalon Elite; Maquet
Cardiovascular, Wayne, NJ) (Figure 1).
In the United States, circuit components
are currently approved for use by the
Food and Drug Administration for short-
term (6 h) cardiopulmonary bypass.

The goal of ECLS is to support gas
exchange and systemic metabolic demands
by providing oxygen delivery to the tissues.
The degree of support provided for native
heart or lung function is in large part
dependent on blood flow (as well as patient
hemoglobin, inlet hemoglobin saturation,
and the properties of the membrane lung).
Table 1 details the differences in cardiac
and pulmonary effects of VA- versus VV-
ECMO. When primary cardiac support is
the goal, drainage of blood from the patient
to the circuit results in decreased right and
left heart filling pressures, reduction in
pulmonary blood flow, cardiac unloading,
and an improvement in end-organ
perfusion. In VA-ECMO, because left
ventricular afterload is increased by
(usually) retrograde aortic flow, additional

interventions may be required to prevent or
relieve left ventricular overdistension in
certain settings. Targeted flow rates in
adults for VA- (and VV-) ECMO are
usually 60 to 80 ml/kg/min. During cardiac
support, mixed venous oxygen saturation is
monitored from the venous drainage limb,
and flow rates are adjusted to maintain
adequate oxygen delivery.

In the VV configuration, ventricular
filling pressures and hemodynamics are
unchanged in the steady state, but oxygen
and carbon dioxide are exchanged via the
membrane lung. Because both the drainage
and return cannula are positioned in the
venous system, mixing can occur.
Recirculation, which is the combination
of perfusate (oxygenated) blood and the
patient’s venous blood reinfused into the
circuit, can limit oxygen delivery. Here, the
lungs sit in series (i.e., supraoxygenated
perfusate blood is delivered back to the
patient’s venous system or right atrium and
then must traverse the pulmonary
circulation) such that expected arterial
oxygen saturations are lower (.85%),
depending on the patient’s innate
pulmonary function. In this setting,
adequate oxygen delivery can be
maintained provided cardiac output is
sufficient, and especially because cardiac
output may be augmented by limiting or
removing positive pressure ventilation. CO2

removal is more efficient than oxygenation
and thus requires substantially lower flow
rates, smaller or pumpless systems, and
smaller cannulas.

Systemic anticoagulation, usually with
unfractionated heparin, is initiated typically at

the time of cannulation to prevent circuit (and
patient) thrombosis (Table 2). The ideal
anticoagulation strategy and appropriate
tests for monitoring (e.g., activating clotting
time, anti-factor Xa or heparin assays,
activated partial thromboplastin time,
thromboelastography) in ECLS are
controversial and should be based on laboratory
capabilities and institutional standards.

Respiratory Support

Respiratory support can be considered
while awaiting recovery from hypoxemic
respiratory failure, hypercarbic respiratory
failure, or massive air leak syndromes or as
away to bridge patients to lung transplantation.
Among ECLS centers who voluntarily
report to the Extracorporeal Life Support
Organization (ELSO) registry, respiratory
failure was the most common indication
for adults as of January 2014, with more
than 5,000 total runs as compared
with approximately 4,000 runs for cardiac
indications (http://elsonet.org).

As a respiratory support modality,
ECLS is most appealing in its potential to
reduce (or eliminate) the injurious effects
of positive pressure ventilation. Ventilator-
associated lung injury from overdistension
of relatively spared lung units and cyclical
recruitment–derecruitment exacerbates
endothelial–epithelial barrier dysfunction,
edema formation, and the release of
inflammatory mediators in already injured
lung (8). High concentrations of inspired
oxygen can worsen cytotoxic damage (9).
A low volume–low pressure ventilation
strategy to reduce mechanical stretch
improves outcomes in ARDS; however,
some patients may develop refractory
hypoxemia and/or have very poor lung
compliance and severe respiratory acidosis
with low VT ventilation (LTVV) (10, 11).

Although the concept and triggers for
using “salvage therapy” in ARDS remain
poorly defined, ECLS may serve as an
adjunct to (or in some cases in place of)
traditional mechanical ventilation,
achieving gas exchange while allowing for
“lung rest” by minimizing the volume,
pressure, and fraction of inspired oxygen
(FIO2

) delivered by the ventilator. Higher
plateau pressures in patients treated with
LTVV and with ECLS have been associated
with death in severe ARDS, suggesting
there may be no safe plateau pressure limit
and that an aggressive strategy to protect

Table 1. Key Differences between Venoarterial and Venovenous Extracorporeal
Membrane Oxygenation in the Steady State

VA-ECMO VV-ECMO

Flow characteristics Nonpulsatile Nonpulsatile
No recirculation Recirculation*

Direct hemodynamic support Partial to complete None
LV effects Decreased preload None

Increased afterload None
Coronary oxygenation Native ejection (patient) Increased
RV effects Decreased preload None†

Decreased afterload None†

Pulmonary Gas exchange Gas exchange
Decreased pulmonary blood flow Unchanged

Definition of abbreviations: ECMO = extracorporeal membrane oxygenation; LV = left ventricle; RV =
right ventricle; VA = venoarterial; VV = venovenous.
*Oxygenated perfusate blood mixed with venous blood, reinfused back into the extracorporeal circuit.
†May have subtle effects on RV function via reversal of hypoxic pulmonary vasoconstriction, limiting
positive intrathoracic pressure, and augmenting coronary oxygenation.
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the lungs may be beneficial (12, 13). In
a small uncontrolled study comparing
patients with ARDS treated with standard
LTVV to those supported with ECCO2R to
achieve very low VTs (4.2 6 0.3 ml/kg) and
end-inspiratory plateau pressures (25.0 6
1.2 cm H2O), morphologic measures and
inflammatory biomarkers of lung injury were
improved in those treated with a very low
volume–pressure strategy; however, this
concept has not been tested in controlled trials
(14). Goal ventilator settings for a patient on
ECLS typically include a respiratory rate of
6 to 10 breaths per minute, peak inspiratory
pressures of 20 to 25 cm H2O, positive end-
expiratory pressure of 10 to 15 cm H2O, and
FIO2

of 0.3 to 0.4, although optimal ventilator
settings are unknown. VTs are usually well
under 6 ml/kg of predicted body weight with
this strategy.

Hypoxemic Respiratory
Failure, ARDS, and the H1N1
Experience

Early randomized trials of ECMO for adults
with severe acute respiratory failure and
ECCO2R for severe ARDS showed no
benefit of ECLS; however, ventilator
strategies, circuit configurations, and
technology have evolved substantially since

these initial studies (15, 16). In the 1990s
and 2000s, a number of observational
studies from experienced ECLS centers
reported survival rates of 52 to 75% in
adults with severe respiratory failure
supported with ECMO (Table 3) (17–22).

The excess morbidity and mortality
from viral pneumonia and ARDS observed
in young persons during the H1N1
pandemic prompted an increase in the use
of ECMO for respiratory failure (Table 3)
(23–26). Investigators from Australia and
New Zealand reported the first case series
of 68 patients supported with ECMO for
suspected or confirmed H1N1-associated
ARDS, 79% of whom were still alive at
the end of the study period (27). Those
who received ECMO tended to be younger
with less comorbid illness as compared
with a mechanically ventilated group with
confirmed H1N1 from the same centers
and ECMO patients also had severe disease,
with median (interquartile range) arterial
PaO2

/FIO2
ratios of 56 (48–63) and acute

lung injury scores of 3.8 (3.5–4.0) (27).
Noah and colleagues compared patients
referred for ECMO support to four specialized
centers in the UK to those with suspected or
confirmed H1N1 from a prospective cohort
(the Swine Flu Triage Study) and found that
the risk of death was approximately 50%

lower in those referred for ECMO, irrespective
of three different statistical matching
approaches (28). In a larger registry of patients
with influenza A from France (the REVA/
French Society of Intensive Care [SRLF]
H1N1 registry), there was no difference in
outcomes for those who received ECMO as
compared with those who did not receive
ECMO with severe ARDS when individuals
were matched one-to-one, although 50% of
the ECMO-treated patients went unmatched,
and mortality was lower in this group as
compared with matched patients receiving
ECMO (12, 29). Survival in an H1N1 cohort
from Utah (n = 47) not treated with rescue
therapies was on par with reports in which
ECMO was used (83%), highlighting the
uncertainty that remains about the role of
this therapy (and other rescue modalities) in
patients with severe respiratory failure (8, 9, 12).

The Conventional ventilation or
ECMO for Severe Adult Respiratory Failure
(CESAR) trial randomized patients with
severe ARDS to conventional mechanical
ventilation versus referral to a single ECMO
center (Glenfield Hospital, Leicaster, UK)
(30). CESAR enrolled 180 adults (from
766 screened), 18 to 65 years of age, with
severe but reversible respiratory failure, and
acute lung injury (or Murray) scores greater
than 3.0 or a pH less than 7.20 despite
optimal mechanical ventilation. Patients
receiving high-level mechanical ventilation
for more than 7 days and/or with a
contraindication to anticoagulation were
excluded (31). There was a significantly
higher rate of survival without disability
at 6 months in those allocated to the
intervention (consideration of ECMO)
versus the control (conventional management)
arm (63 vs. 47%, respectively; relative risk,
0.69; 95% confidence interval, 0.05–0.97; P =
0.03). However, several important caveats
about CESAR should be considered. First,
only 75% of those referred for ECMO actually
received it, as treatment with a standardized
protocol including LTVV, diuresis, and
prone positioning allowed some to avoid
cannulation. Second, practice in the control
arm was not standardized. Patients referred
for ECMO were more likely to receive LTVV
ventilation for longer periods of time as
compared with those conventionally managed
in the referring hospitals, which could have
accounted for the differences in outcome.
Third, three of the patients in the control
group were lost to follow-up at 6 months and
could have changed the results depending on
their disability status. Fourth, interhospital

Table 2. Selected Patient-related Complications of Extracorporeal Life Support as
Reported to the Extracorporeal Life Support Organization Registry, by Cardiac versus
Respiratory Indication

Cardiac
Indication

Respiratory
Indication

Hemorrhagic complications, %
Gastrointestinal 4 6
Cannula site 20 15
Surgical site 23 14
Hemolysis 7 6
DIC 4 3

Central nervous system complications, %
Infarct* 4 2
Hemorrhage* 2 4

Pulmonary complications, %
Pneumothorax requiring treatment 2 11
Pulmonary hemorrhage 3 7

Infectious disease complications, %
Culture-proven infection 14 18

Musculoskeletal complications, %
Limb ischemia ,1 ,1
Compartment syndrome ,1 ,1
Fasciotomy ,1 0
Amputation ,1 0

Definition of abbreviations: DIC = disseminated intravascular coagulation.
*As detected by ultrasound or computed tomography.
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transport was not without risk, as five patients
died during the transport process (although
the primary analysis was intention to treat).
Although there were significant differences
in lengths of stay and cost between the two
groups, ECMO referral was demonstrated to
be cost effective by the investigators (30, 32).

Although CESAR demonstrated that
care at an ECMO-based center may improve
outcomes in adults with severe ARDS,
the limitations discussed above make it
impossible to conclude that ECMO itself
provides benefit. Thus, there remains
clinical equipoise to conduct a large clinical
trial to define the role of ECMO in
adults with severe ARDS. Extracorporeal
Membrane Oxygenation for Severe Acute
Respiratory Distress Syndrome (EOLIA) is
an ongoing randomized, multicenter, open-
label trial that will compare 60-day all-cause
mortality in patients with severe ARDS
treated with rapid initiation (within 3–6 h
after optimal medical management) of
ECMO plus very low volume–pressure
settings with those receiving standardized
LTVV (ClinicalTrials.gov, NCT01470703).

Hypercarbic Respiratory
Failure and Extracorporeal
Carbon Dioxide Removal

CO2 clearance is more efficient than
oxygenation and depends largely on sweep
flow and membrane characteristics, rather
than blood flow (33). Pumpless systems,
which use a patient’s arteriovenous pressure

gradient to create a shunt from artery to
vein (e.g., interventional lung assist [iLA];
NovaLung, Heilbronn, Germany), and
circuits similar to those used for renal
ultrafiltration that incorporate low-flow
pumps and small or dual-lumen venous
cannulas (with avoidance of arterial
cannulation) have been studied for this
purpose (14, 34–37). A retrospective series
of 90 patients with ARDS demonstrated
rapid normalization of CO2 and modest
improvements in oxygenation using iLA,
although vasopressors were uniformly
required to establish sufficient shunt flow
(1–2 L/min) and the rate of lower limb
ischemia was 10% (35). A follow-up
prospective randomized trial (the Xtravent-
study), which compared iLA and very LTVV
(approximately 3 ml/kg) to traditional LTVV
in adults with severe ARDS (n = 79) found
no difference in the primary endpoint of
ventilator-free days at 28 and 60 days (38).

Although the use of ECCO2R has not
been robustly studied in acute
exacerbations of airways disease, it stands
to reason that because the primary
abnormality is ventilatory failure, the
potential for lower flow rates and/or
pumpless configurations may offer a more
favorable side effect profile as compared
with VV-ECMO. ECCO2R may also allow
for the minimization of sedation and
promotion of early mobilization in certain
patients. Several small studies have been
published on the use of ECCO2R to avoid
or replace mechanical ventilation in acute
exacerbations of chronic obstructive

pulmonary disease (39–41). In two studies
using lung-assist systems, low flow rates
achieved improvements in respiratory
acidosis, avoidance of invasive ventilation
in many patients, and, in one study, shorter
hospital lengths of stay as compared with
age-, diagnosis-, and acuity-matched
control subjects receiving mechanical
ventilation (37, 39, 41). In one of these
reports, the ECCO2R circuit consisted of
a 15.5F coaxial cannula (placed in the
internal jugular or femoral position) with
a centrifugal pump to enhance CO2

clearance to achieve targeted flow rates of
0.3–0.5 L/min (Hemolung Respiratory
Assist System; ALung Technologies, Inc,
Pittsburgh, PA) (37, 39). In a pilot study of
five patients with acute exacerbations of
chronic obstructive pulmonary disease,
ECCO2R and dual-lumen small cannulae
(20–23F) were successfully used for early
extubation and ambulation (40).

Bridge to Lung Transplantation
and Primary Graft Dysfunction

As mechanically ventilated patients have
a worse survival after lung transplant, there
has been a renewed interest in the use
of ECLS as a bridging strategy to
transplantation, although this approach
remains controversial (42). Small series
have reported the use of ECLS alone or
in combination with standard mechanical
ventilation, with mixed results (43–48).
In an analysis of lung transplant recipients

Table 3. Recent Large Studies of Extracorporeal Life Support for Adults with Respiratory Failure

Year 1986–2006 1989–1995 1989–2003 2000–2012 2001–2006 2007–2010 2008–2012 2009 2009–2010 2009–2010 2009–2011
First author Brogan (121) Lewandowski (18) Hemmila (19) Schmidt (128) Peek (30) Schmid (139) Schmidt (136) Davies (27) Patroniti (23) Noah (28) Pham (12)
Source

population
ELSO Germany Michigan ELSO UK* Germany France ANZ Italy UK France

H1N1 series No No No No No No (9 with
H1N1)

No (36 with
H1N1)

Yes Yes Yes Yes

No. 1,473 49 255 2,355 90 ECMO
referred

176 140 68 49 80 Referred,
69 ECMO

123

Age, yr 34 (16–84) 32 (14) 38 (13) 41 (28–54) 40 (13) 48 (16) 44 (30–56) 34 (27–43) 39 (32–46) 34 (28–46) 42 (13)
Male sex, % — 57 49 — 57 61 50 57 38 50
BMI, kg/m2

— — — — — 30 (9) 27 (24–32) 29 (23–36) 28 (24–35) — 31 (9)
SOFA — — — — — 12 (4) 12 (10–15) — 7 (6–9) 9 (7–10) 10 (4)
APACHE II — 18 (5) — — 20 (6) — — — — — —
VV-ECMO, % 78 100 66 82 — 100 95 — — 84 87
PaO2

/FIO 2
,

mm Hg
— 67 (28) 55 (16) 59 (48–75) 76 (30) 77 (47) 53 (46–60) 56 (48–63) 63 (56–79) 55 (46–63) 63 (21)

Prior duration
MV, d

— 13 (9) 4 (3) 2 (0.8–6) — 6 (10) 5 (1–11) 2 (1–5) 2 (1–5) 4 (2–7) 2 (1–5)

VT, ml/kg PBW — 11 (4) — — — — 6 (5–7) 6 (5–7) 6 (5–7) 5 (4–7) 7 (2)
Duration

ECLS, d
6 (3–12) 23 (20) 9 (8) 7 (4–13) 9 (6–16) 12 (9) 15 (8–30) 10 (7–15) 10 (7–17) 9 (6–12) 11 (8–22)

Mortality, % 50 45 48 43 37 44 40 21 29 24 36

Definition of abbreviations: ANZ = Australia, New Zealand; APACHE = Acute Physiology and Chronic Health Evaluation; BMI = body mass index;
ECLS = extracorporeal life support; ELSO = Extracorporeal Life Support Organization; MV = mechanical ventilation; PBW = predicted body weight;
SOFA = Sequential Organ Failure Assessment; VV-ECMO = venovenous extracorporeal membrane oxygenation.
Data are expressed as mean (SD) or median (interquartile range).
*Conventional ventilation or ECMO for Severe Adult Respiratory Failure (CESAR) trial.
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in the United Network for Organ Sharing
Registry from 1987 to 2008, the use of
preoperative ECMO (n = 51) resulted
in higher rates of retransplantation (as
compared with recipients not requiring
preoperative life support) and was an
independent predictor of death after
transplantation (47). One-year survival in
patients bridged to lung transplantation
from ECMO has been reported to be
between 62 and 75% with duration of
mechanical support before transplant
inversely related to outcomes (49, 50). A
strategy of “awake ECMO” for patients
awaiting lung transplantation has been
reported more recently and offers the
theoretical advantage of early mobilization,
rehabilitation, and avoidance of endotracheal
intubation and its associated complications
(49, 51–56). Fuehner and colleagues reported
a retrospective single-center experience
comparing awake ECMO recipients to
a historical control group who had received
invasive ventilation as a bridge to transplant
and found a higher likelihood of survival at
6 months in the awake ECMO group (80 vs.
50%, P = 0.02) and shorter post-transplant
ventilator courses despite similar durations
of bridging therapies and rates of waiting
list deaths (53).

The most appropriate ECLS
configuration for a given patient being
bridged to lung transplant depends on the
underlying disease process. Patients with
significant right heart failure and/or
hemodynamic compromise may require
VA-ECMO support, whereas those with
obstructive or restrictive lung disease can be
supported with VV-ECMO or ECCO2R.
Given the uncertainty of the available
donor pool and the possibility of prolonged
waitlist time on bridging therapy, the ideal
extracorporeal circuit would have the
potential for long-term use. Several cases
have been reported describing the use of
pulmonary artery to left atrial shunts
including a parallel oxygenator (iLA;
NovaLung) to support patients with
pulmonary arterial hypertension and right
ventricular failure for up to 62 days while
awaiting transplant (57–59).

In the post-transplant period, VV- and
VA-ECMO have been used to support
patients who develop primary graft
dysfunction (PGD). Although there have
been no controlled studies, single-center
observations suggest the use of ECMO in
severe PGD with inadequate gas exchange
despite maximal medical management has

greater than 60% survival in the immediate
post-transplant period, especially when
instituted early (within 24 h), although
significant ECMO-related complications
have been reported and long-term survival
as well as allograft function are generally
poor in recipients with severe PGD (60–64).
In a review of 151 cases reported to ELSO,
42% of patients receiving ECMO for
post-transplant PGD survived to hospital
discharge, although this estimate is
susceptible to selection and reporting bias
(65). Elevated oxygenation index (mean
airway pressure 3 FIO2

/PaO2
> 30) after

transplant predicted the development of
severe PGD likely to require ECMO in
a single study, with excellent survival when
ECMO was initiated early in response to
this marker (80 vs. 15% for those with late
or no intervention, P = 0.02) (63). It has
been suggested that early ECMO be
considered for severe PGD in those who are
at greatest risk for developing graft failure
(e.g., recipient diagnosis of pulmonary
hypertension) (66, 67). There has been
limited experience with the use of ECLS to
enhance organ procurement in both brain-
and cardiac-death donors (68–70).

Cardiac Support

A number of options exist for mechanical
circulatory support in cardiac failure.
In acutely decompensated patients,
a temporary bridging strategy may best
serve patients as the most appropriate
destination therapy is being determined.
There are no controlled trials comparing
other short-term devices (i.e., intraaortic
balloon counterpulsation or temporary
ventricular assist devices [VAD]) to VA-
ECMO for refractory cardiogenic shock, but
ECLS may be used as a salvage strategy in
this setting (71–73). Failure to wean from
intraoperative cardiopulmonary bypass
(postcardiotomy), acute myocardial
infarction, ischemic cardiomyopathy,
acute myocarditis, and postpartum
cardiomyopathy are common indications
for VA-ECMO. Successful transitioning
from ECMO directly to cardiac transplant
has been described, as has bridging to
cardiac retransplantation after allograft
failure, although patients supported with
VADs had better survival than those
bridged with ECMO while awaiting
retransplant in the United Network for
Organ Sharing Registry (74–77). Short-

term mechanical circulatory support may
be the most feasible approach for patients
presenting remotely, and mobile ECLS
services have been developed for this purpose
(78). Reported survival rates for VA-ECMO
vary widely depending on the indication but
average around 40% in reports from
experienced centers (71, 75, 79–82).

ECLS may be considered in patients
requiring emergent cardiac catheterization.
Small series have described the successful
use of ECLS for patients who suffer a cardiac
arrest during percutaneous intervention
or transcatheter aortic valve implantation,
while providing therapeutic hypothermia
(83, 84). A retrospective series from Japan
of 86 patients described the use of VA-
ECMO to assist in revascularization for
patients in refractory cardiac arrest (85).
Intraarrest percutaneous intervention with
ECMO support was achieved in 71% of
the cohort (with concurrent therapeutic
hypothermia in 37% of cases); 29 and 24%
of patients survived to 30 days and had
favorable neurologic outcomes, respectively
(85). As compared with the more
traditional bridging devices used in the
catheterization laboratory, ECLS provides
additional gas-exchange support for those
patients with oxygenation issues and/or
underlying lung disease and supports right
ventricular function in those patients with
biventricular failure.

Extracorporeal Cardiopulmonary
Resuscitation

Although there have been no controlled
studies, two observational, single-center
studies have suggested extracorporeal
cardiopulmonary resuscitation (ECPR)
confers a survival benefit in adults suffering
in-hospital cardiac arrest (86, 87).
Investigators from Taiwan prospectively
compared the use of ECPR in adults with
witnessed in-hospital cardiac arrest to those
treated with traditional cardiopulmonary
resuscitation (CPR) (87). Patients were
eligible for ECPR if a cardiac etiology was
felt to be the cause of the arrest and after
failure of return of spontaneous circulation
for at least 10 minutes (n = 59); all others
received standard CPR (n = 113). After
propensity matching, the risk of death
at discharge, 30 days, and 1 year was
approximately halved among those who
had received ECPR, and there were
significant differences in survival to
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discharge even among those who had been
resuscitated for prolonged periods of time
(.60 min). Treatment assignment (ECPR
vs. traditional CPR) was not randomly
allocated, and there were baseline
differences between the groups not
accounted for by matching, thus raising
concerns about residual bias and
confounding in this study (88). Single-
center series have reported z30% survival
rates to hospital discharge combining ECPR
with traditional resuscitation efforts in
experienced centers where ECLS can be
rapidly deployed (87, 89–92).

Potential Additional Uses in
Critical Illness

ECLS has been used to rescue critically ill
adults for etiologies outside of primary
cardiopulmonary failure, but evidence
supporting the expansion of ECLS use
in the critical care setting is lacking. In
a retrospective series of 52 patients with
septic shock supported with VA-ECMO,
75% of whom had at least three organ
failures, only 15% survived to hospital
discharge, and thus sepsis remains
a controversial indication in adults (93).
Because myocardial depression can occur
in some patients with sepsis and given
advances in ECLS technology, this may be
an important area for future study. In
a recent retrospective series of 14 patients
supported with VA-ECMO for refractory
septic shock and documented acute severe
left ventricular dysfunction, 71% were
discharged home and were alive after
13 months (94). In trauma patients, the
risks of systemic anticoagulation and the
consumptive coagulopathy that often
develops need to be strongly considered
when evaluating such a patient for ECLS. In
the 1990s, modified extracorporeal circuits
were used to reverse hypothermia via
countercurrent rewarming and to assist in
massive resuscitation, and several successful
reports or small series of ECMO for
support of trauma patients followed
(95–100). Miniaturized ECLS circuits have
allowed for interhospital transfer to trauma
centers and successful evacuation of
severely injured soldiers, even when war
zone cannulation is required (101, 102).
A number of case reports have been
published describing the use of VV-ECMO
or ECCO2R in patients with ARDS due
to severe burns and/or smoke inhalation

injury (103–108). Existing literature on
the use of ECLS for burn patients was
summarized recently by Asmussen and
colleagues; to date, no large prospective
series exist for this indication (109). Finally,
because the leading cause of death in
acute drug intoxication is cardiovascular
collapse, ECLS has been successfully used
for overdose after traditional supportive
measures fail (110–113). Daubin
and colleagues recently published
a retrospective report of 17 cases of severe
poisoning requiring ECLS for refractory
shock from a variety of drugs over a 10-year
period (114). Survival to hospital discharge
was 76% without significant neurologic
sequelae. There was a high rate (60%) of
cannula-related complications, although most
of these occurred before a change in technique
to provide a distal shunt for limb perfusion,
as has been seen in prior series (114, 115).

Relative Contraindications
and Complications

There are no absolute contraindications to
ECLS, and each patient should be evaluated
on a case-by-case basis and in the context
of the individual center’s experience.
ECLS can be associated with a number of
complications, however, including bleeding,
thrombosis, infection, and distal limb
ischemia. Patient-related complications by
VA versus VV configuration as voluntarily
reported to ELSO are presented in Table 2,
acknowledging that these data may be
subject to reporting bias. With improvements
in technology and changes in clinical
practice (e.g., miniaturized, coated circuits;
conservative anticoagulation and transfusion
strategies), complication rates may decrease
over time. Patients with a history of recent
central nervous system hemorrhage and other
contraindications to anticoagulation are
generally considered high-risk candidates
for extracorporeal support. Although
anticoagulation can be withheld or reduced for
brief periods of time, the use of ECLS in
patients with bleeding diathesis (e.g., diffuse
alveolar hemorrhage or intracranial bleeding)
is supported by case reports only (116–120).
Rates of central nervous system infarction
or hemorrhage and surgical bleeding were
roughly 5 and 30%, respectively, in a large
series of adult patients with respiratory failure
supported with ECLS from the ELSO registry,
78% of whom were supported with a VV
configuration (121). The morbidity associated

with VA-ECMO for cardiac failure is higher
(as one would anticipate with cannulation of
a major artery and in patients receiving ECPR
or ECLS postcardiotomy) with frequent
reporting of major bleeding (41%), infection
(31%), and lesser but considerable rates of
lower extremity ischemia (17%), neurologic
complications (13%), stroke (6%), and
lower extremity amputation (5%) (79). In
a series of 81 patients who received ECMO
for refractory cardiogenic shock, the
majority (57%) experienced at least one
major complication related to ECLS (82).

Life-limiting comorbidities or
additional organ failures that are not
considered reversible limit the potential
benefit of ECLS. Advanced vascular disease
or ease of vascular access should also be
considered when assessing a patient’s
candidacy. Increasing age has been
consistently associated with worse
outcomes across many observational
studies, although individual patients of
advanced age may be considered candidates
depending on indication for support and
comorbid illness(es) (121–123). Renal
failure has been repeatedly shown to predict
a poor prognosis in patients on VA-ECMO
(78, 82, 122–124). Acute myocarditis as
an indication for VA support appears to be
associated with better survival, as does male
sex (19, 82, 125, 126). When considering
patients for respiratory support, longer
duration of mechanical ventilation before
ECMO clearly predicts a poor prognosis
(particularly when the patient has been
mechanically ventilated for more than 7 d),
and the CESAR trial excluded those
patients who had been on high pressure
(.30 cm H2O) or high FIO2

(.0.80) for
longer than 7 days before study entry
(17–19, 30, 127). The ELSO registry was
recently used to develop and validate
a survival equation for adults with
respiratory failure requiring ECMO, the
Respiratory ECMO Survival Prediction
Score (RESP-score), incorporating many of
the above-mentioned pre-ECMO variables,
with good discrimination in a small
validation cohort (c-statistic = 0.92; 95%
confidence interval, 0.89–0.97) (128).

In addition to patient-related
complications, equipment-related failures
can occur. Observations from the last 2
decades suggest relatively low rates of
circuit rupture (2%) and clotting (20%)
(121). Polymethylpentene hollow-fiber
oxygenators and heparin-coated circuits
have improved gas exchange capabilities,
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reduced shear stress and hemolysis, and
improved durability when compared with
earlier generation silicone oxygenators (129).
Oxygenator failure occurred in 12 and 7%
of adult respiratory and cardiac cases,
respectively, with widely variable run
times (www.elso.org). Bicaval dual-lumen
catheters (Avalon Elite; Maquet) for VV-
ECMO offers single-site cannulation and
may enhance patient mobilization and
reduce recirculation; however, care must be
taken to place these cannulas under direct
visualization using either fluoroscopic or
echocardiographic guidance, as major vessel
injury and right ventricular rupture have
been reported (130, 131).

Resource Use and
Long-Term Outcomes

The provision of ECLS services is a resource-
intense endeavor that ideally includes
a multidisciplinary care team, transport
services, ongoing educational/simulation
programs, equipment updates, and follow-
up care. In the CESAR trial, health-care
costs per ECMO-referred patient were more
than double those for patients managed
conventionally (difference in costs, $65,519,
with longer intensive care unit and hospital
stays in the ECMO group, even among
nonsurvivors), but ECMO treatment
translated to a small gain in quality-adjusted
life years at 6 months and a favorable
lifetime predicted cost-utility of roughly
$31,000 per life-year (30, 132).

Although current ELSO guidelines
outline important requirements for ECMO
centers, including the need for an experienced
physician programdirector, a full-time ECMO

coordinator, and ongoing training and
protocolization for specialists, there is no
formal accreditation process for centers and
specialists at this time. To this end, this review
is accompanied by an international consensus
statement on programdevelopment for centers
offering ECMO for adults with respiratory
failure (133). To provide appropriate care, an
ECMO center should complete at least six runs
annually; adequate center volume may be
closer to 15 or 20 annual ECLS runs, as these
thresholds have recently been tied to better
survival in neonatal and pediatric populations
(www.elso.org) (134, 135).

Little is known about the long-term
sequelae of ECLS in adult survivors. In
the absence of randomized trials with
comparable control groups, it is difficult
to distinguish morbidity related to
critical illness and organ failures from
complications related to ECLS itself. French
investigators have reported a 6-month
survival rate approaching 60% for patients
with severe ARDS treated with ECMO,
although survivors had impaired health-
related quality-of-life scores in physical and
emotional well-being as compared with
control subjects (136). Similarly, in a cohort
of French patients who received VA-
ECMO for refractory cardiogenic shock,
survivors had long-term deficits in physical
and social function as compared with
control subjects, although they had better
quality-of-life indices than patients with
chronic medical conditions and those
recovering from ARDS (82). Longitudinal
data from the CESAR trial demonstrated
no difference in validated surveys of
health status, respiratory symptoms, or
spirometric measures by treatment

allocation at 6 months (30). In a small
series of adults followed for 0.5 to 12 years
after ECMO, 52% had abnormal
neurocognitive function, with a high
incidence of neuroradiologic
abnormalities, especially among those who
had received VA-ECMO (75%) (137).
Among 87 adults who had received ECLS
for predominantly cardiac indications,
50% suffered neurologic injury and 9 of 10
nonsurvivors with brain autopsies available
demonstrated areas of hemorrhage or
hypoxic ischemic injury (138).

Conclusions

ECLS is being increasingly used to support
critically ill adults who have failed
conventional management. The pioneering
work of well-established centers, technologic
advances in circuit components, and the
experience gained in the 2009 to 2010
influenza A(H1N1) pandemic have allowed
for the successful rescue ofmany patients, but
significant questions remain regarding the
appropriate patient population, the optimal
circuitry and cannulation technique,
ventilation strategies, patient mobility,
outcomes, and cost-effectiveness. Controlled
trials are needed to better define indications
and best practices for this therapy. n
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Swärd K, Sipponen J, Silverborn M, Dellgren G. Usefulness of

CONCISE CLINICAL REVIEW

Concise Clinical Review 505



extracorporeal membrane oxygenation as a bridge to lung
transplantation: a descriptive study. J Heart Lung Transplant 2011;
30:103–107.

45. de Perrot M, Granton JT, McRae K, Cypel M, Pierre A, Waddell TK,
Yasufuku K, Hutcheon M, Chaparro C, Singer L, et al. Impact of
extracorporeal life support on outcome in patients with idiopathic
pulmonary arterial hypertension awaiting lung transplantation.
J Heart Lung Transplant 2011;30:997–1002.

46. Toyoda Y, Bhama JK, Shigemura N, Zaldonis D, Pilewski J, Crespo M,
Bermudez C. Efficacy of extracorporeal membrane oxygenation as
a bridge to lung transplantation. J Thorac Cardiovasc Surg. 2013;
145:1065–1070. [Discussion, pp. 1070–1061.]

47. Mason DP, Thuita L, Nowicki ER, Murthy SC, Pettersson GB,
Blackstone EH. Should lung transplantation be performed for
patients on mechanical respiratory support? The US experience.
J Thorac Cardiovasc Surg 2010;139:765–773.e761

48. Haneya A, Philipp A, Mueller T, Lubnow M, Pfeifer M, Zink W, Hilker M,
Schmid C, Hirt S. Extracorporeal circulatory systems as a bridge to
lung transplantation at remote transplant centers. Ann Thorac Surg
2011;91:250–255.

49. Crotti S, Iotti GA, Lissoni A, Belliato M, Zanierato M, Chierichetti M, Di
Meo G, Meloni F, Pappalettera M, Nosotti M, et al. Organ allocation
waiting time during extracorporeal bridge to lung transplant affects
outcomes. Chest 2013;144:1018–1025.
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